Genome scale enzyme-metabolite and drug-target interaction predictions using the signature molecular descriptor
نویسندگان
چکیده
MOTIVATION Identifying protein enzymatic or pharmacological activities are important areas of research in biology and chemistry. Biological and chemical databases are increasingly being populated with linkages between protein sequences and chemical structures. There is now sufficient information to apply machine-learning techniques to predict interactions between chemicals and proteins at a genome scale. Current machine-learning techniques use as input either protein sequences and structures or chemical information. We propose here a method to infer protein-chemical interactions using heterogeneous input consisting of both protein sequence and chemical information. RESULTS Our method relies on expressing proteins and chemicals with a common cheminformatics representation. We demonstrate our approach by predicting whether proteins can catalyze reactions not present in training sets. We also predict whether a given drug can bind a target, in the absence of prior binding information for that drug and target. Such predictions cannot be made with current machine-learning techniques requiring binding information for individual reactions or individual targets.
منابع مشابه
The in Silico Characterization of a Salicylic Acid Analogue Coding Gene Clusters in Selected Pseudomonas Fluorescens Strains
Background: The microbial genome sequences provide solid in silico framework for interpretation their drug-like chemical scaffolds biosynthetic potential. The Pseudomonas fluorescens species is metabolically versatile and producing therapeutically important natural products.Objectives: The main objective of the present study was to mine the publically available data of P. fluorescens stra...
متن کاملInvestigation on metabolism of cisplatin resistant ovarian cancer using a genome scale metabolic model and microarray data
Objective(s): Many cancer cells show significant resistance to drugs that kill drug sensitive cancer cells and non-tumor cells and such resistance might be a consequence of the difference in metabolism. Therefore, studying the metabolism of drug resistant cancer cells and comparison with drug sensitive and normal cell lines is the objective of this research. Material and Methods:Metabolism of c...
متن کاملComparison of Chemical Descriptors for Protein–chemical Interaction Prediction
Predicting protein–chemical interaction has been an important and challenging task in the bioinformatics community, and there are many related applications in biomedical research, including QSAR modelling and novel lead discovery. A fundamental hypothesis for predicting protein–chemical interaction is that chemical compounds sharing chemical similarity should also share protein target profiles,...
متن کاملAssessment of "drug-likeness" of a small library of natural products using chemoinformatics
Even though natural products has an excellent record as a source for new drugs, the advent of ultrahigh-throughput screening and large-scale combinatorial synthetic methods, has caused a decline in the use of natural products research in the pharmaceutical industry. This is due to the efficiency in generating and screening a high number of synthetic combinatorial compounds; whereas traditional ...
متن کاملAssessment of "drug-likeness" of a small library of natural products using chemoinformatics
Even though natural products has an excellent record as a source for new drugs, the advent of ultrahigh-throughput screening and large-scale combinatorial synthetic methods, has caused a decline in the use of natural products research in the pharmaceutical industry. This is due to the efficiency in generating and screening a high number of synthetic combinatorial compounds; whereas traditional ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2008